Projective dimension, graph domination parameters, and independence complex homology
نویسندگان
چکیده
منابع مشابه
Projective dimension, graph domination parameters, and independence complex homology
We construct several pairwise-incomparable bounds on the projective dimensions of edge ideals. Our bounds use combinatorial properties of the associated graphs. In particular, we draw heavily from the topic of dominating sets. Through Hochster’s Formula, we recover and strengthen existing results on the homological connectivity of graph independence complexes.
متن کاملFurther Applications of Clutter Domination Parameters to Projective Dimension
We study the relationship between the projective dimension of a squarefree monomial ideal and the domination parameters of the associated graph or clutter. In particular, we show that the projective dimensions of graphs with perfect dominating sets can be calculated combinatorially. We also generalize the wellknown graph domination parameter τ to clutters, obtaining bounds on the projective dim...
متن کاملHereditary Domination & Independence Parameters
For a graphical property P and a graph G, we say that a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. Then the P-domination number of G is the minimum cardinality of a dominating P-set and the P-independence number the maximum cardinality of a P-set. We show that several properties of domination, independent domination and acyclic domination hold for ...
متن کاملHereditary domination and independence parameters
For a graphical property P and a graph G, we say that a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. Then the P-domination number of G is the minimum cardinality of a dominating P-set and the P-independence number the maximum cardinality of a P-set. We show that several properties of domination, independent domination and acyclic domination hold for ...
متن کاملNote: Simultaneous Graph Parameters: Factor Domination and Factor Total Domination
Let F1, F2, . . . , Fk be graphs with the same vertex set V . A subset S ⊆ V is a factor dominating set if in every Fi every vertex not in S is adjacent to a vertex in S, and a factor total dominating set if in every Fi every vertex in V is adjacent to a vertex in S. The cardinality of a smallest such set is the factor (total) domination number. In this note we investigate bounds on the factor ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2013
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2012.09.005